Hello friend !! Aaj hum aapko Divisibility rule ke baare me batane jaa rahe hai. Ye rule bahot hi jaada helpful aur important rule hai. Aaj hum aapko iss important rule ke baare me full details me batane jaa rahe hai.
Aaj hum aapko batayenge ki, Divisibility rule kya hai? Iss rule ka use hum kyu karte hai? Kon-kon se numbers ke liye hum iss rule ka use kar sakte hai? Aur bhi bahot kuch aaj hum aapko iss rule ke baare me full details me batayenge. Toh chaliye aaj ka lesson start karte hai-:
Ye bhi sikhe-:
❒ Pythagoras theorem with related questions
❒ Fast calculate square of numbers ending with 5
❒ square root in few seconds
Aaj hum aapko batayenge ki, Divisibility rule kya hai? Iss rule ka use hum kyu karte hai? Kon-kon se numbers ke liye hum iss rule ka use kar sakte hai? Aur bhi bahot kuch aaj hum aapko iss rule ke baare me full details me batayenge. Toh chaliye aaj ka lesson start karte hai-:
Divisibility rule | Vibhajyata ka Niyam
Divisibility rule ko hindi me "Vibhajyata ka niyam" ( विभाज्यता का नियम ) kahte hai. Kabhi-kabhi isse "Divisibility test " Vibhajyata ki jaanch ( विभाज्यता की जाँच ) bhi kahate hai. Jaisa ki iss rule ke naam se hi pataa chal raha hai ki, "Vibhajyata ka niyam" matalab "bhaag ka niyam" ya "Bhaag ki jaanch". Toh hum iss niyam se bhaag ki jaanch kar sakte hai. Bhaag ki jaanch ka matlab ki, Koi diya huaa number, kisi fix number se divide ho jaayega ya nahi. Aayiye iss rule ko thoda details me sikhate hai.Divisibility rule kya hai?
Divisibility rule ek bahot hi easy method hai, "jiski help se aap bina bhaag (divide) kiye hi ye maalum kar sakte hai ki koi diya huaa number kisi fix number se complete divide ho jaayega ya nahi." Complete divide hone ka matlab ye hai ki, divide karne par shashphal (Remainder) = 0 aaye.
Jaise-: Agar hum 36 ko 3 se divide kare. Means 36÷3 = 12 . Toh hume sheshphal = 0 milta hai.
Divisibility rule me hum kuch number jaise- 2, 3, 4, 5, ..... ke aise important rule ko sikhate hai. Jiss se hum aashani se ye maalum kar sakte hai ki, koi number inn numbers (2, 3, 4, 5,....) se completly divide ho jaayega ya nahi.
Yaha par ye dhayan rakhe ki, sabhi numbers ke bhaag ki jaanch karne ke alag-alag rule hai. Jaise - 2 se divide karne ki jaanch karne ka alag rule hai, toh 3 se jaanch karne ka alag rule hai. Ye sabhi rule hum aapko Next lesson me batayenge.
Toh bas yahi hai, Divisibility rule. Hume ummid hai ki, ab aap jaan gaye honge ki, ye rule kya hai? Ab hum ye jaan lete hai ki, iss rule ka use hum kyu karte hai?
Jaise-: Agar hum 36 ko 3 se divide kare. Means 36÷3 = 12 . Toh hume sheshphal = 0 milta hai.
Divisibility rule me hum kuch number jaise- 2, 3, 4, 5, ..... ke aise important rule ko sikhate hai. Jiss se hum aashani se ye maalum kar sakte hai ki, koi number inn numbers (2, 3, 4, 5,....) se completly divide ho jaayega ya nahi.
Yaha par ye dhayan rakhe ki, sabhi numbers ke bhaag ki jaanch karne ke alag-alag rule hai. Jaise - 2 se divide karne ki jaanch karne ka alag rule hai, toh 3 se jaanch karne ka alag rule hai. Ye sabhi rule hum aapko Next lesson me batayenge.
Toh bas yahi hai, Divisibility rule. Hume ummid hai ki, ab aap jaan gaye honge ki, ye rule kya hai? Ab hum ye jaan lete hai ki, iss rule ka use hum kyu karte hai?
Divisibility rule ka use hum kyu karte hai?
"Divisibility rule ka use hum kyu karte hai?" Yaa "Iss rule ka use hum kyu kare?" Yaa "Kya jarurat hai iss rule ka?" Inn sabhi question ka answer dene se pahle hum aap se ek question puchhana chahate hai.
Question ye hai ki, 14184 kon-kon se numbers se completely divide hoga?
Toh agar aap divisibility rule nahi jaante honge toh aap ek-ek number 2, 3, 4, ... numbers se 14184 ko divide karke check karnge ki, ye kon-kon se numbers divide ho jaa raha hai. Ek-ek number se divide karke check karne me time aur mehanat dono jaada lagata hai.
Lekin agar aap aap divisibility rule jaante honge toh aap iss rule ki help se bina bhaag kiye hi bata denge ki, 14184 kon-kon numbers se completely divide ho jaayega. Toh ek toh ye ho gaya iss rule ko use karne ka karan.
Aur dusara kaaran ye hai ki, iss rule ka use bade-bade fraction ko reduce (divide karke chhota karna) karne me bhi bahot jaada helpful hota hai.
Jaise-: Agar fraction 2961/3241 ko reduce karna ho toh hum ye sochate hai ki, aisa kon-sa ek number hai jiss se 2961 aur 3241 ko completely divide karega.
Divisibility rule se aashani se hum check kar lenge ki 2961 aur 3241 kon-kon numbers se divide ho jaayega. Jiss se hume 2961/3241 ko reduce karne me bahot help milegi.
Hume ummid hai ki, ab aap jaan gaye honge ki, iss rule ka use hum kyu karte hai? aur ye rule kitana adhik helpful hai. Ab hum aage badate hai.
Question ye hai ki, 14184 kon-kon se numbers se completely divide hoga?
Toh agar aap divisibility rule nahi jaante honge toh aap ek-ek number 2, 3, 4, ... numbers se 14184 ko divide karke check karnge ki, ye kon-kon se numbers divide ho jaa raha hai. Ek-ek number se divide karke check karne me time aur mehanat dono jaada lagata hai.
Lekin agar aap aap divisibility rule jaante honge toh aap iss rule ki help se bina bhaag kiye hi bata denge ki, 14184 kon-kon numbers se completely divide ho jaayega. Toh ek toh ye ho gaya iss rule ko use karne ka karan.
Aur dusara kaaran ye hai ki, iss rule ka use bade-bade fraction ko reduce (divide karke chhota karna) karne me bhi bahot jaada helpful hota hai.
Jaise-: Agar fraction 2961/3241 ko reduce karna ho toh hum ye sochate hai ki, aisa kon-sa ek number hai jiss se 2961 aur 3241 ko completely divide karega.
Divisibility rule se aashani se hum check kar lenge ki 2961 aur 3241 kon-kon numbers se divide ho jaayega. Jiss se hume 2961/3241 ko reduce karne me bahot help milegi.
Hume ummid hai ki, ab aap jaan gaye honge ki, iss rule ka use hum kyu karte hai? aur ye rule kitana adhik helpful hai. Ab hum aage badate hai.
Kon - Kon se number ke liye iss rule ka use kar sakte hai ?
Divisibility rule me Sabhi number ke divisibility check karne ka rule nahi hota hai. Kuch fix numbers hi hai jinke kisi aur number ke saath divisibility check karne ka rule hai. Sabhi number ke alag - alag divisible karne ke rule hai. Wo sabhi fix numbers kuch iss prakar se niche diya gaya hai. Niche diye gaye numbers ke hi divisibility rule se hum ye check kar sakte hai ki koi number inn numbers se divisible hai ya nahi.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 25, 88, 125 etc.
Toh uppar diye inhi numbers sw divisible rules ko hum "Divisibility rules" kahate hai. Apne next lesson me hum aapko uppar diye ek-ek number ka divisible rule batayenge. Toh next lesson bahut important hai. Aap ussko miss mat kijiyega. Ussko jarur padhiyega.
Toh uppar diye inhi numbers sw divisible rules ko hum "Divisibility rules" kahate hai. Apne next lesson me hum aapko uppar diye ek-ek number ka divisible rule batayenge. Toh next lesson bahut important hai. Aap ussko miss mat kijiyega. Ussko jarur padhiyega.
Ye bhi sikhe-:
❒ Pythagoras theorem with related questions
❒ Fast calculate square of numbers ending with 5
❒ square root in few seconds
Aaj ke iss lesson me bas itana hi. Hume ummid hai ki, ab aap iss Divisibility rule ko achhi tarah se samjh gaye honge. Agar phir bhi aapko iss lesson ke kisi point par koi doubt hai toh aap abhi nichey diye comment box me comment karke puchh sakte hai. Hum aapke question ka reply jarur denge.
Aap chahe toh niche diye humare Facebook page par massage karke bhi apna question puchh sakte hai.
"Next lesson me aap math ka kon-sa topic sikhna chahate hai? " Abhi comment ya massage karke bataye. Hum uss lesson ko aapko sikhayenge.
At last Agar aapko aaj ka ye math topic helpful laga ho toh please ek share jarur kare. Aapke ek share karne se humari bahot help hoti hai.
Aap chahe toh niche diye humare Facebook page par massage karke bhi apna question puchh sakte hai.
"Next lesson me aap math ka kon-sa topic sikhna chahate hai? " Abhi comment ya massage karke bataye. Hum uss lesson ko aapko sikhayenge.
At last Agar aapko aaj ka ye math topic helpful laga ho toh please ek share jarur kare. Aapke ek share karne se humari bahot help hoti hai.
कोई टिप्पणी नहीं:
एक टिप्पणी भेजें